\qquad
Date: \qquad Period: \qquad

Solving One Step Equations - Guided Notes

I. Equations

A. Vocabulary

- An _equation is a mathematical sentence with an \qquad sign.
- The following are all considered to be equations:

Ex) $9+2=11$

Ex) $x+7=37$

Ex) $a+(-3)=2 a+5$

- A _solution of an equation is a value for a \qquad variable that makes an equation \qquad true .

You substitute a number for a variable to determine whether the number is a __solution__ of the equation.

Examples

Directions: Is the given number a solution for the equation? Please show how you arrived at your answer.
Ex) $170+x=200$, for $\mathrm{x}=30$
$170+30=200$ True
YES
Ex) $3=12-\mathrm{a}$, for $\mathrm{a}=6$
$3=12-6$ Not True
NO

Ex) $9-m=3$, for $m=6$
Ex) $8+t=2 t$, for $t=3$

II. Solving One-Step Equations

A. Important Rules for Solving Equations

Rule \#1) When you solve an equation, your goal is to get the \qquad variable alone by itself on _one __side_ of the equation. In other words, you are trying to __isolate__ the variable.

Rule \#2) When you are solving for a variable, you MUST use inverse _operations_ to isolate the variable on one side of the equation.
**Rule \#3) Whatever you do to __one__ _side__ of an equation, you must do to the _other _ side__ of the equation. In other words, you must keep the equation _equal/balanced.

- Think of solving an equation like lifting weights.
- If you _add_ or _subtract_ weight from one side of the barbell, you must _add_ or _subtract_ the same amount of weight from the other side of the barbell to keep it balanced.

Please draw a line between the inverse operations.

B. Solving One-Step Equations by Adding or Subtracting

- When you are solving an equation, you MUST use the inverse operation to isolate the variable on one side of the equation.
- REMEMBER: If you add or subtract a number from one side of the equation, you must add or subtract the same number from the other side of the equation.

Examples

Directions: Solve each equation for the variable.
Ex) $x+4=6$

- Questions you need to ask yourself: How can I isolate this variable (or get it alone by itself)? Which operation do I need to use to solve the equation?
- You can always check to see if your answer is correct by substituting it back into the original equation

$$
x+4=6
$$

-4 -4 (You must show your work on BOTH sides of the equations, otherwise it doesn't stay balanced)
$x=2$

Ex) $y-5=12$

- Questions you need to ask yourself: How can I isolate this variable (or get it alone by itself)? Which operation do I need to use to solve the equation?
- You can always check to see if your answer is correct by substituting it back into the original equation

$$
\begin{array}{rr}
y-5= & 12 \\
+5 \quad+5 \\
y=17
\end{array}
$$

Directions: Solve each equation.
Ex) $d+1=5$
Ex) $x+11=3$
Ex) $\mathrm{c}+4=5$

Ex) $b-12=49$
Ex) $\mathrm{z}-5=12$
Ex) $p-30=42$

C. Solving Variations of One-Step Equations by Adding or Subtracting

- Notice that you can express one-step equations in different ways. It does not change how you go about solve the equation.

Directions: Solve each equation.
Ex) $11=t+2$
Ex) $17=y+6$
Ex) $8=m+8$

Ex) $22=\mathrm{c}-12$
Ex) $21=r-5$
Ex) $100=y-16$

D. Number in Front of A Variable

- Whenever you see a variable, it is understood to have a $\mathbf{1}$ in front of it.

Examples
Directions: Please rewrite each variable, expression, or equation so that the number in front of each variable is visible.
Ex) x
Ex) $y-4=4$
Ex) $x=-14$
Ex) $\frac{t}{4}=4$

E. Solving One-Step Equations by Multiplying or Dividing

- When you are solving an equation, your goal is to use the inverse operation to isolate the variable on one side of the equation.
- REMEMBER: If you add or subtract a number from one side of the equation, you must add or subtract the same number from the other side of the equation to keep it balanced.

Examples

Directions: Solve each equation.
Ex) $2 \mathrm{p}=18$
Ex) $4 x=8$
Ex) $\frac{z}{14}=2$

Directions: Solve each equation.
Ex) $16=4 b$
Ex) $20=5 \mathrm{c}$
Ex) $5=\frac{d}{8}$
Ex) $11=\frac{s}{2}$

G. Negative Sign in Front of A Number

- Whenever you see a negative sign in front of a number or variable, it is understood to have a negative 1 in front of it.

Examples

Directions: Please rewrite each variable, expression, or equation so that the number in front of each variable is visible.
Ex) $-x$
Ex) $-\mathrm{y}+1=5$
Ex) $-\mathrm{x}=-12$
Ex) $\frac{-t}{4}=4$

III. Solving One-Step Equations with Negative Integers

Directions: Solve each equation.
Ex) $d+3=-6$
Ex) $x+(-8)=12$
Ex) $-t+5=9$
Ex) $-\mathrm{p}+6=-7$

Directions: Solve each equation.
Ex) $b-11=-9$
Ex) $-\mathrm{e}-3=7$
Ex) $-\mathrm{g}-4=-3$

Directions: Solve each equation.
Ex) $-x=12$
Ex) $-\mathrm{g}=-5$
Ex) $-\mathrm{x}=33$

Directions: Solve each equation.
Ex) $\frac{r}{-5}=10$
Ex) $\frac{k}{2}=-6$
Ex) $\frac{t}{-4}=-20$

Directions: Solve each equation.
Ex) $\frac{-x}{8}=8$
Ex) $\frac{-r}{2}=-13$
Ex) $\frac{-c}{-5}=-12$

